Вывод решения квадратного уравнения. Три полезных лайфхака, как решать квадратные уравнения быстрее, чем через дискриминант


Продолжаем изучение темы «решение уравнений ». Мы уже познакомились с линейными уравнениями и переходим к знакомству с квадратными уравнениями .

Сначала мы разберем, что такое квадратное уравнение, как оно записывается в общем виде, и дадим связанные определения. После этого на примерах подробно разберем, как решаются неполные квадратные уравнения. Дальше перейдем к решению полных уравнений, получим формулу корней, познакомимся с дискриминантом квадратного уравнения и рассмотрим решения характерных примеров. Наконец, проследим связи между корнями и коэффициентами.

Навигация по странице.

Что такое квадратное уравнение? Их виды

Для начала надо отчетливо понимать, что такое квадратное уравнение. Поэтому разговор о квадратных уравнениях логично начать с определения квадратного уравнения, а также связанных с ним определений. После этого можно рассмотреть основные виды квадратных уравнений: приведенные и неприведенные, а также полные и неполные уравнения.

Определение и примеры квадратных уравнений

Определение.

Квадратное уравнение – это уравнение вида a·x 2 +b·x+c=0 , где x – переменная, a , b и c – некоторые числа, причем a отлично от нуля.

Сразу скажем, что квадратные уравнения часто называют уравнениями второй степени. Это связано с тем, что квадратное уравнение является алгебраическим уравнением второй степени.

Озвученное определение позволяет привести примеры квадратных уравнений. Так 2·x 2 +6·x+1=0 , 0,2·x 2 +2,5·x+0,03=0 и т.п. – это квадратные уравнения.

Определение.

Числа a , b и c называют коэффициентами квадратного уравнения a·x 2 +b·x+c=0 , причем коэффициент a называют первым, или старшим, или коэффициентом при x 2 , b – вторым коэффициентом, или коэффициентом при x , а c – свободным членом.

Для примера возьмем квадратное уравнение вида 5·x 2 −2·x−3=0 , здесь старший коэффициент есть 5 , второй коэффициент равен −2 , а свободный член равен −3 . Обратите внимание, когда коэффициенты b и/или c отрицательные, как в только что приведенном примере, то используется краткая форма записи квадратного уравнения вида 5·x 2 −2·x−3=0 , а не 5·x 2 +(−2)·x+(−3)=0 .

Стоит отметить, что когда коэффициенты a и/или b равны 1 или −1 , то они в записи квадратного уравнения обычно не присутствуют явно, что связано с особенностями записи таких . Например, в квадратном уравнении y 2 −y+3=0 старший коэффициент есть единица, а коэффициент при y равен −1 .

Приведенные и неприведенные квадратные уравнения

В зависимости от значения старшего коэффициента различают приведенные и неприведенные квадратные уравнения. Дадим соответствующие определения.

Определение.

Квадратное уравнение, в котором старший коэффициент равен 1 , называют приведенным квадратным уравнением . В противном случае квадратное уравнение является неприведенным .

Согласно данному определению, квадратные уравнения x 2 −3·x+1=0 , x 2 −x−2/3=0 и т.п. – приведенные, в каждом из них первый коэффициент равен единице. А 5·x 2 −x−1=0 , и т.п. - неприведенные квадратные уравнения, их старшие коэффициенты отличны от 1 .

От любого неприведенного квадратного уравнения с помощью деления его обеих частей на старший коэффициент можно перейти к приведенному. Это действие является равносильным преобразованием , то есть, полученное таким способом приведенное квадратное уравнение имеет те же корни, что и исходное неприведенное квадратное уравнение, или, так же как оно, не имеет корней.

Разберем на примере, как выполняется переход от неприведенного квадратного уравнения к приведенному.

Пример.

От уравнения 3·x 2 +12·x−7=0 перейдите к соответствующему приведенному квадратному уравнению.

Решение.

Нам достаточно выполнить деление обеих частей исходного уравнения на старший коэффициент 3 , он отличен от нуля, поэтому мы можем выполнить это действие. Имеем (3·x 2 +12·x−7):3=0:3 , что то же самое, (3·x 2):3+(12·x):3−7:3=0 , и дальше (3:3)·x 2 +(12:3)·x−7:3=0 , откуда . Так мы получили приведенное квадратное уравнение, равносильное исходному.

Ответ:

Полные и неполные квадратные уравнения

В определении квадратного уравнения присутствует условие a≠0 . Это условие нужно для того, чтобы уравнение a·x 2 +b·x+c=0 было именно квадратным, так как при a=0 оно фактически становится линейным уравнением вида b·x+c=0 .

Что касается коэффициентов b и c , то они могут быть равны нулю, причем как по отдельности, так и вместе. В этих случаях квадратное уравнение называют неполным.

Определение.

Квадратное уравнение a·x 2 +b·x+c=0 называют неполным , если хотя бы один из коэффициентов b , c равен нулю.

В свою очередь

Определение.

Полное квадратное уравнение – это уравнение, у которого все коэффициенты отличны от нуля.

Такие названия даны не случайно. Из следующих рассуждений это станет понятно.

Если коэффициент b равен нулю, то квадратное уравнение принимает вид a·x 2 +0·x+c=0 , и оно равносильно уравнению a·x 2 +c=0 . Если c=0 , то есть, квадратное уравнение имеет вид a·x 2 +b·x+0=0 , то его можно переписать как a·x 2 +b·x=0 . А при b=0 и c=0 мы получим квадратное уравнение a·x 2 =0 . Полученные уравнения отличаются от полного квадратного уравнения тем, что их левые части не содержат либо слагаемого с переменной x, либо свободного члена, либо и того и другого. Отсюда и их название – неполные квадратные уравнения.

Так уравнения x 2 +x+1=0 и −2·x 2 −5·x+0,2=0 – это примеры полных квадратных уравнений, а x 2 =0 , −2·x 2 =0 , 5·x 2 +3=0 , −x 2 −5·x=0 – это неполные квадратные уравнения.

Решение неполных квадратных уравнений

Из информации предыдущего пункта следует, что существует три вида неполных квадратных уравнений :

  • a·x 2 =0 , ему отвечают коэффициенты b=0 и c=0 ;
  • a·x 2 +c=0 , когда b=0 ;
  • и a·x 2 +b·x=0 , когда c=0 .

Разберем по порядку, как решаются неполные квадратные уравнения каждого из этих видов.

a·x 2 =0

Начнем с решения неполных квадратных уравнений, в которых коэффициенты b и c равны нулю, то есть, с уравнений вида a·x 2 =0 . Уравнению a·x 2 =0 равносильно уравнение x 2 =0 , которое получается из исходного делением его обеих частей на отличное от нуля число a . Очевидно, корнем уравнения x 2 =0 является нуль, так как 0 2 =0 . Других корней это уравнение не имеет, что объясняется , действительно, для любого отличного от нуля числа p имеет место неравенство p 2 >0 , откуда следует, что при p≠0 равенство p 2 =0 никогда не достигается.

Итак, неполное квадратное уравнение a·x 2 =0 имеет единственный корень x=0 .

В качестве примера приведем решение неполного квадратного уравнения −4·x 2 =0 . Ему равносильно уравнение x 2 =0 , его единственным корнем является x=0 , следовательно, и исходное уравнение имеет единственный корень нуль.

Краткое решение в этом случае можно оформить следующим образом:
−4·x 2 =0 ,
x 2 =0 ,
x=0 .

a·x 2 +c=0

Теперь рассмотрим, как решаются неполные квадратные уравнения, в которых коэффициент b равен нулю, а c≠0 , то есть, уравнения вида a·x 2 +c=0 . Мы знаем, что перенос слагаемого из одной части уравнения в другую с противоположным знаком, а также деление обеих частей уравнения на отличное от нуля число дают равносильное уравнение. Поэтому можно провести следующие равносильные преобразования неполного квадратного уравнения a·x 2 +c=0 :

  • перенести c в правую часть, что дает уравнение a·x 2 =−c ,
  • и разделить обе его части на a , получаем .

Полученное уравнение позволяет сделать выводы о его корнях. В зависимости от значений a и c значение выражения может быть отрицательным (например, если a=1 и c=2 , то ) или положительным, (к примеру, если a=−2 и c=6 , то ), оно не равно нулю, так как по условию c≠0 . Отдельно разберем случаи и .

Если , то уравнение не имеет корней. Это утверждение следует из того, что квадрат любого числа есть число неотрицательное. Из этого вытекает, что когда , то ни для какого числа p равенство не может быть верным.

Если , то дело с корнями уравнения обстоит иначе. В этом случае, если вспомнить о , то сразу становится очевиден корень уравнения , им является число , так как . Несложно догадаться, что и число тоже является корнем уравнения , действительно, . Других корней это уравнение не имеет, что можно показать, например, методом от противного. Сделаем это.

Обозначим только что озвученные корни уравнения как x 1 и −x 1 . Предположим, что уравнение имеет еще один корень x 2 , отличный от указанных корней x 1 и −x 1 . Известно, что подстановка в уравнение вместо x его корней обращает уравнение в верное числовое равенство . Для x 1 и −x 1 имеем , а для x 2 имеем . Свойства числовых равенств нам позволяют выполнять почленное вычитание верных числовых равенств, так вычитание соответствующих частей равенств и дает x 1 2 −x 2 2 =0 . Свойства действий с числами позволяют переписать полученное равенство как (x 1 −x 2)·(x 1 +x 2)=0 . Мы знаем, что произведение двух чисел равно нулю тогда и только тогда, когда хотя бы одно из них равно нулю. Следовательно, из полученного равенства следует, что x 1 −x 2 =0 и/или x 1 +x 2 =0 , что то же самое, x 2 =x 1 и/или x 2 =−x 1 . Так мы пришли к противоречию, так как вначале мы сказали, что корень уравнения x 2 отличен от x 1 и −x 1 . Этим доказано, что уравнение не имеет других корней, кроме и .

Обобщим информацию этого пункта. Неполное квадратное уравнение a·x 2 +c=0 равносильно уравнению , которое

  • не имеет корней, если ,
  • имеет два корня и , если .

Рассмотрим примеры решения неполных квадратных уравнений вида a·x 2 +c=0 .

Начнем с квадратного уравнения 9·x 2 +7=0 . После переноса свободного члена в правую часть уравнения, оно примет вид 9·x 2 =−7 . Разделив обе части полученного уравнения на 9 , придем к . Так как в правой части получилось отрицательное число, то это уравнение не имеет корней, следовательно, и исходное неполное квадратное уравнение 9·x 2 +7=0 не имеет корней.

Решим еще одно неполное квадратное уравнение −x 2 +9=0 . Переносим девятку в правую часть: −x 2 =−9 . Теперь делим обе части на −1 , получаем x 2 =9 . В правой части находится положительное число, откуда заключаем, что или . После записываем окончательный ответ: неполное квадратное уравнение −x 2 +9=0 имеет два корня x=3 или x=−3 .

a·x 2 +b·x=0

Осталось разобраться с решением последнего вида неполных квадратных уравнений при c=0 . Неполные квадратные уравнения вида a·x 2 +b·x=0 позволяет решить метод разложения на множители . Очевидно, мы можем , находящийся в левой части уравнения, для чего достаточно вынести за скобки общий множитель x . Это позволяет перейти от исходного неполного квадратного уравнения к равносильному уравнению вида x·(a·x+b)=0 . А это уравнение равносильно совокупности двух уравнений x=0 и a·x+b=0 , последнее из которых является линейным и имеет корень x=−b/a .

Итак, неполное квадратное уравнение a·x 2 +b·x=0 имеет два корня x=0 и x=−b/a .

Для закрепления материала разберем решение конкретного примера.

Пример.

Решите уравнение .

Решение.

Выносим x за скобки, это дает уравнение . Оно равносильно двум уравнениям x=0 и . Решаем полученное линейное уравнение: , и выполнив деление смешанного числа на обыкновенную дробь, находим . Следовательно, корнями исходного уравнения являются x=0 и .

После получения необходимой практики, решения подобных уравнений можно записывать кратко:

Ответ:

x=0 , .

Дискриминант, формула корней квадратного уравнения

Для решения квадратных уравнений существуют формула корней. Запишем формулу корней квадратного уравнения : , где D=b 2 −4·a·c – так называемый дискриминант квадратного уравнения . Запись по сути означает, что .

Полезно знать, как была получена формула корней, и как она применяется при нахождении корней квадратных уравнений. Разберемся с этим.

Вывод формулы корней квадратного уравнения

Пусть нам нужно решить квадратное уравнение a·x 2 +b·x+c=0 . Выполним некоторые равносильные преобразования :

  • Обе части этого уравнения мы можем разделить на отличное от нуля число a , в результате получим приведенное квадратное уравнение .
  • Теперь выделим полный квадрат в его левой части: . После этого уравнение примет вид .
  • На этом этапе можно осуществить перенос двух последних слагаемых в правую часть с противоположным знаком, имеем .
  • И еще преобразуем выражение, оказавшееся в правой части: .

В итоге мы приходим к уравнению , которое равносильно исходному квадратному уравнению a·x 2 +b·x+c=0 .

Аналогичные по форме уравнения мы уже решали в предыдущих пунктах, когда разбирали . Это позволяет сделать следующие выводы, касающиеся корней уравнения :

  • если , то уравнение не имеет действительных решений;
  • если , то уравнение имеет вид , следовательно, , откуда виден его единственный корень ;
  • если , то или , что то же самое или , то есть, уравнение имеет два корня.

Таким образом, наличие или отсутствие корней уравнения , а значит и исходного квадратного уравнения, зависит от знака выражения , стоящего в правой части. В свою очередь знак этого выражения определяется знаком числителя, так как знаменатель 4·a 2 всегда положителен, то есть, знаком выражения b 2 −4·a·c . Это выражение b 2 −4·a·c , назвали дискриминантом квадратного уравнения и обозначили буквой D . Отсюда понятна суть дискриминанта – по его значению и знаку делают вывод, имеет ли квадратное уравнение действительные корни, и если имеет, то каково их количество - один или два.

Возвращаемся к уравнению , перепишем его с использованием обозначения дискриминанта: . И делаем выводы:

  • если D<0 , то это уравнение не имеет действительных корней;
  • если D=0 , то это уравнение имеет единственный корень ;
  • наконец, если D>0 , то уравнение имеет два корня или , которые в силу можно переписать в виде или , а после раскрытия и приведения дробей к общему знаменателю получаем .

Так мы вывели формулы корней квадратного уравнения, они имеют вид , где дискриминант D вычисляется по формуле D=b 2 −4·a·c .

С их помощью при положительном дискриминанте можно вычислить оба действительных корня квадратного уравнения. При равном нулю дискриминанте обе формулы дают одно и то же значение корня, соответствующее единственному решению квадратного уравнения. А при отрицательном дискриминанте при попытке воспользоваться формулой корней квадратного уравнения мы сталкиваемся с извлечением квадратного корня из отрицательного числа, что выводит нас за рамки и школьной программы. При отрицательном дискриминанте квадратное уравнение не имеет действительных корней, но имеет пару комплексно сопряженных корней, которые можно найти по тем же полученным нами формулам корней .

Алгоритм решения квадратных уравнений по формулам корней

На практике при решении квадратных уравнения можно сразу использовать формулу корней, с помощью которой вычислить их значения. Но это больше относиться к нахождению комплексных корней.

Однако в школьном курсе алгебры обычно речь идет не о комплексных, а о действительных корнях квадратного уравнения. В этом случае целесообразно перед использованием формул корней квадратного уравнения предварительно найти дискриминант, убедиться, что он неотрицательный (в противном случае можно делать вывод, что уравнение не имеет действительных корней), и уже после этого вычислять значения корней.

Приведенные рассуждения позволяют записать алгоритм решения квадратного уравнения . Чтобы решить квадратное уравнение a·x 2 +b·x+c=0 , надо:

  • по формуле дискриминанта D=b 2 −4·a·c вычислить его значение;
  • заключить, что квадратное уравнение не имеет действительных корней, если дискриминант отрицательный;
  • вычислить единственный корень уравнения по формуле , если D=0 ;
  • найти два действительных корня квадратного уравнения по формуле корней , если дискриминант положительный.

Здесь лишь заметим, что при равном нулю дискриминанте можно использовать и формулу , она даст то же значение, что и .

Можно переходить к примерам применения алгоритма решения квадратных уравнений.

Примеры решения квадратных уравнений

Рассмотрим решения трех квадратных уравнений с положительным, отрицательным и равным нулю дискриминантом. Разобравшись с их решением, по аналогии можно будет решить любое другое квадратное уравнение. Начнем.

Пример.

Найдите корни уравнения x 2 +2·x−6=0 .

Решение.

В этом случае имеем следующие коэффициенты квадратного уравнения: a=1 , b=2 и c=−6 . Согласно алгоритму, сначала надо вычислить дискриминант, для этого подставляем указанные a , b и c в формулу дискриминанта, имеем D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28 . Так как 28>0 , то есть, дискриминант больше нуля, то квадратное уравнение имеет два действительных корня. Найдем их по формуле корней , получаем , здесь можно упростить полученные выражения, выполнив вынесение множителя за знак корня с последующим сокращением дроби:

Ответ:

Переходим к следующему характерному примеру.

Пример.

Решите квадратное уравнение −4·x 2 +28·x−49=0 .

Решение.

Начинаем с нахождения дискриминанта: D=28 2 −4·(−4)·(−49)=784−784=0 . Следовательно, это квадратное уравнение имеет единственный корень, который находим как , то есть,

Ответ:

x=3,5 .

Остается рассмотреть решение квадратных уравнений с отрицательным дискриминантом.

Пример.

Решите уравнение 5·y 2 +6·y+2=0 .

Решение.

Здесь такие коэффициенты квадратного уравнения: a=5 , b=6 и c=2 . Подставляем эти значения в формулу дискриминанта, имеем D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4 . Дискриминант отрицательный, следовательно, данное квадратное уравнение не имеет действительных корней.

Если же потребуется указать комплексные корни, то применяем известную формулу корней квадратного уравнения , и выполняем действия с комплексными числами :

Ответ:

действительных корней нет, комплексные корни таковы: .

Еще раз отметим, что если дискриминант квадратного уравнения отрицательный, то в школе обычно сразу записывают ответ, в котором указывают, что действительных корней нет, и не находят комплексные корни.

Формула корней для четных вторых коэффициентов

Формула корней квадратного уравнения , где D=b 2 −4·a·c позволяет получить формулу более компактного вида, позволяющую решать квадратные уравнения с четным коэффициентом при x (или просто с коэффициентом, имеющим вид 2·n , например, , или 14·ln5=2·7·ln5 ). Выведем ее.

Допустим нам нужно решить квадратное уравнение вида a·x 2 +2·n·x+c=0 . Найдем его корни с использованием известной нам формулы. Для этого вычисляем дискриминант D=(2·n) 2 −4·a·c=4·n 2 −4·a·c=4·(n 2 −a·c) , и дальше используем формулу корней:

Обозначим выражение n 2 −a·c как D 1 (иногда его обозначают D" ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2·n примет вид , где D 1 =n 2 −a·c .

Несложно заметить, что D=4·D 1 , или D 1 =D/4 . Другими словами, D 1 – это четвертая часть дискриминанта. Понятно, что знак D 1 такой же, как знак D . То есть, знак D 1 также является индикатором наличия или отсутствия корней квадратного уравнения.

Итак, чтобы решить квадратное уравнение со вторым коэффициентом 2·n , надо

  • Вычислить D 1 =n 2 −a·c ;
  • Если D 1 <0 , то сделать вывод, что действительных корней нет;
  • Если D 1 =0 , то вычислить единственный корень уравнения по формуле ;
  • Если же D 1 >0 , то найти два действительных корня по формуле .

Рассмотрим решение примера с использованием полученной в этом пункте формулы корней.

Пример.

Решите квадратное уравнение 5·x 2 −6·x−32=0 .

Решение.

Второй коэффициент этого уравнения можно представить в виде 2·(−3) . То есть, можно переписать исходное квадратное уравнение в виде 5·x 2 +2·(−3)·x−32=0 , здесь a=5 , n=−3 и c=−32 , и вычислить четвертую часть дискриминанта: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169 . Так как его значение положительно, то уравнение имеет два действительных корня. Найдем их, используя соответствующую формулу корней:

Заметим, что можно было использовать обычную формулу корней квадратного уравнения, но в этом случае пришлось бы выполнить больший объем вычислительной работы.

Ответ:

Упрощение вида квадратных уравнений

Порой, прежде чем пускаться в вычисление корней квадратного уравнения по формулам, не помешает задаться вопросом: «А нельзя ли упростить вид этого уравнения»? Согласитесь, что в плане вычислений проще будет решить квадратное уравнение 11·x 2 −4·x−6=0 , чем 1100·x 2 −400·x−600=0 .

Обычно упрощение вида квадратного уравнения достигается путем умножения или деления его обеих частей на некоторое число. Например, в предыдущем абзаце удалось достичь упрощения уравнения 1100·x 2 −400·x−600=0 , разделив обе его части на 100 .

Подобное преобразование проводят с квадратными уравнениями, коэффициенты которого не являются . При этом обычно делят обе части уравнения на абсолютных величин его коэффициентов. Для примера возьмем квадратное уравнение 12·x 2 −42·x+48=0 . абсолютных величин его коэффициентов: НОД(12, 42, 48)= НОД(НОД(12, 42), 48)= НОД(6, 48)=6 . Разделив обе части исходного квадратного уравнения на 6 , мы придем к равносильному ему квадратному уравнению 2·x 2 −7·x+8=0 .

А умножение обеих частей квадратного уравнения обычно производится для избавления от дробных коэффициентов. При этом умножение проводят на знаменателей его коэффициентов. Например, если обе части квадратного уравнения умножить на НОК(6, 3, 1)=6 , то оно примет более простой вид x 2 +4·x−18=0 .

В заключение этого пункта заметим, что почти всегда избавляются от минуса при старшем коэффициенте квадратного уравнения, изменяя знаки всех членов, что соответствует умножению (или делению) обеих частей на −1 . Например, обычно от квадратного уравнения −2·x 2 −3·x+7=0 переходят к решению 2·x 2 +3·x−7=0 .

Связь между корнями и коэффициентами квадратного уравнения

Формула корней квадратного уравнения выражает корни уравнения через его коэффициенты. Отталкиваясь от формулы корней, можно получить другие зависимости между корнями и коэффициентами.

Наиболее известны и применимы формулы из теоремы Виета вида и . В частности, для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней – свободному члену. Например, по виду квадратного уравнения 3·x 2 −7·x+22=0 можно сразу сказать, что сумма его корней равна 7/3 , а произведение корней равно 22/3 .

Используя уже записанные формулы можно получить и ряд других связей между корнями и коэффициентами квадратного уравнения. К примеру, можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты: .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.

5х (х - 4) = 0

5 х = 0 или х - 4 = 0

х = ± √ 25/4

Научившись решать уравнения первой степени, безусловно, хочется работать с другими, в частности, с уравнениями второй степени, которые по-другому называются квадратными.

Квадратные уравнения - это уравнения типа ах ² + bx + c = 0, где переменной является х, числами будут - а, b, с, где а не равняется нулю.

Если в квадратном уравнении один или другой коэффициент (с или b) будет равняться нулю, то это уравнение будет относиться к неполному квадратному уравнению.

Как решить неполное квадратное уравнение, если ученики до сих пор умели решать только уравнения первой степени? Рассмотрим неполные квадратные уравнения разных видов и несложные способы их решения.

а) Если коэффициент с будет равен 0, а коэффициент b не будет равен нулю, то ах ² + bх + 0 = 0 сводится к уравнению вида ах ² + bх = 0.

Чтобы решить такое уравнение, нужно знать формулу решения неполного квадратного уравнения, которая заключается в том, чтобы левую часть его разложить на множители и позже использовать условие равенства произведения нулю.

Например, 5х ² - 20х = 0. Раскладываем левую часть уравнения на множители, при этом совершая обычную математическую операцию: вынос общего множителя за скобки

5х (х - 4) = 0

Используем условие, гласящее, что произведения равны нулю.

5 х = 0 или х - 4 = 0

Ответом будет: первый корень - 0; второй корень - 4.

б) Если b = 0, а свободный член не равен нулю, то уравнение ах ² + 0х + с = 0 сводится к уравнению вида ах ² + с = 0. Решают уравнения двумя способами: а) раскладывая многочлен уравнения в левой части на множители; б) используя свойства арифметического квадратного корня. Такое уравнение решается одним из методов, например:

х = ± √ 25/4

х = ± 5/2. Ответом будет: первый корень равен 5/2; второй корень равен - 5/2.

в) Если b будет равен 0 и с будет равен 0, то ах ² + 0 + 0 = 0 сводится к уравнению вида ах ² = 0. В таком уравнении x будет равен 0.

Как видите, неполные квадратные уравнения могут иметь не более двух корней.

Неполное квадратное уравнение отличаются от классических (полных) уравнений тем, что его множители или свободный член равны нулю. Графиком таких функций являются параболы. В зависимости от общего вида их делят на 3 группы. Принципы решения для всех типов уравнений одинаковы.

Ничего сложного в определении типа неполного многочлена нет. Рассмотреть основные отличия лучше всего на наглядных примерах:

  1. Если b = 0, то уравнение имеет вид ax 2 + c = 0.
  2. Если c = 0, то решать следует выражение ax 2 + bx = 0.
  3. Если b = 0 и c = 0, то многочлен превращается в равенство типа ax 2 = 0.

Последний случай является скорее теоретической возможностью и никогда не встречается в заданиях для проверки знаний, так как единственно верное значение переменной x в выражении – это ноль. В дальнейшем будет рассмотрены способы и примеры решения неполных квадратных уравнений 1) и 2) видов.

Общий алгоритм поиска переменных и примеры с решением

Не зависимо от разновидности уравнения алгоритм решения сводится к следующим шагам:

  1. Привести выражение к удобному для поиска корней виду.
  2. Произвести вычисления.
  3. Записать ответ.

Решать неполные уравнения проще всего, разложив на множители левую часть и оставив ноль в правой. Таким образом, формула неполного квадратного уравнения для поиска корней сводится к вычислению значения x для каждого из множителей.

Научиться способам решения можно только лишь на практике, поэтому рассмотрим конкретный пример нахождения корней неполного уравнения:

Как видно, в данном случае b = 0. Разложим левую часть на множители и получим выражение:

4(x – 0,5) ⋅ (x + 0,5) = 0.

Очевидно, что произведение равно нулю, когда хотя бы один из множителей равен нулю. Подобным требованиям отвечают значения переменной x1 = 0,5 и (или) x2 = -0,5.

Для того, чтобы легко и быстро справляться с задачей разложения квадратного трехчлена на множители, следует запомнить следующую формулу:

Если в выражении отсутствует свободный член, задача многократно упрощается. Достаточно будет всего лишь найти и вынести за скобки общий знаменатель. Для наглядности рассмотрим пример, как решать неполные квадратные уравнения вида ax2 + bx = 0.

Вынесем переменную x за скобки и получим следующее выражение:

x ⋅ (x + 3) = 0.

Руководствуясь логикой, приходим к выводу, что x1 = 0, а x2 = -3.

Традиционный способ решения и неполные квадратные уравнения

Что же будет, если применить формулу дискриминанта и попытаться найти корни многочлена, при коэффициентах равных нулю? Возьмем пример из сборника типовых заданий для ЕГЭ по математики 2017 года, решим его с помощью стандартных формул и методом разложения на множители.

7x 2 – 3x = 0.

Рассчитаем значение дискриминант: D = (-3)2 – 4 ⋅ (-7) ⋅ 0 = 9. Получается, многочлен имеет два корня:

Теперь, решим уравнение разложением на множители и сравним результаты.

X ⋅ (7x + 3) = 0,

2) 7x + 3 = 0,
7x = -3,
x = -.

Как видно, оба метода дают одинаковый результат, но решить уравнение вторым способ получилось гораздо проще и быстрее.

Теорема Виета

А что же делать с полюбившейся теоремой Виета? Можно ли применять данный метод при неполном трехчлене? Попробуем разобраться в аспектах приведения неполных уравнений к классическому виду ax2 + bx + c = 0.

На самом деле применять теорему Виета в данном случае возможно. Необходимо лишь привести выражение к общему виду, заменив недостающие члены нулем.

Например, при b = 0 и a = 1, дабы исключить вероятность путаницы следует записать задание в виде: ax2 + 0 + c = 0. Тогда отношение суммы и произведения корней и множителей многочлена можно выразить следующим образом:

Теоретические выкладки помогают ознакомиться с сутью вопроса, и всегда требуют отработки навыка при решении конкретных задач. Снова обратимся к справочнику типовых заданий для ЕГЭ и найдем подходящий пример:

Запишем выражение в удобном для применения теоремы Виета виде:

x 2 + 0 – 16 = 0.

Следующим шагом составим систему условий:

Очевидно, что корнями квадратного многочлена будут x 1 = 4 и x 2 = -4.

Теперь, потренируемся приводить уравнение к общему виду. Возьмем следующий пример: 1/4× x 2 – 1 = 0

Для того, чтобы применить к выражению теорему Виета необходимо избавиться от дроби. Перемножим левую и правую части на 4, и посмотрим на результат: x2– 4 = 0. Полученное равенство готово для решения теоремой Виета, но гораздо проще и быстрее получить ответ просто перенеся с = 4 в правую часть уравнения: x2 = 4.

Подводя итог, следует сказать, что лучшим способом решения неполных уравнений является разложения на множители, является самым простым и быстрым методом. При возникновении затруднений в процессе поиска корней можно обратиться к традиционному методу нахождения корней через дискриминант.

Содержание урока

Что такое квадратное уравнение и как его решать?

Мы помним, что уравнение это равенство, содержащее в себе переменную, значение которой нужно найти.

Если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение называют уравнением второй степени или квадратным уравнением .

Например, следующие уравнения являются квадратными:

Решим первое из этих уравнений, а именно x 2 − 4 = 0 .

Все тождественные преобразования, которые мы применяли при решении обычных линейных уравнений, можно применять и при решении квадратных.

Итак, в уравнении x 2 − 4 = 0 перенесем член −4 из левой части в правую часть, изменив знак:

Получили уравнение x 2 = 4 . Ранее мы говорили, что уравнение считается решённым, если в одной части переменная записана в первой степени и её коэффициент равен единице, а другая часть равна какому-нибудь числу. То есть чтобы решить уравнение, его следует привести к виду x = a , где a — корень уравнения.

У нас переменная x всё ещё во второй степени, поэтому решение необходимо продолжить.

Чтобы решить уравнение x 2 = 4 , нужно ответить на вопрос при каком значении x левая часть станет равна 4 . Очевидно, что при значениях 2 и −2 . Чтобы вывести эти значения воспользуемся определением квадратного корня.

Число b называется квадратным корнем из числа a , если b 2 = a и обозначается как

У нас сейчас похожая ситуация. Ведь, что такое x 2 = 4 ? Переменная x в данном случае это квадратный корень из числа 4, поскольку вторая степень x прирáвнена к 4.

Тогда можно записать, что . Вычисление правой части позвóлит узнать чему равно x . Квадратный корень имеет два значения: положительное и отрицательное. Тогда получаем x = 2 и x = −2 .

Обычно записывают так: перед квадратным корнем ставят знак «плюс-минус», затем находят . В нашем случае на этапе когда записано выражение , перед следует поставить знак ±

Затем найти арифметическое значение квадратного корня

Выражение x = ± 2 означает, что x = 2 и x = −2 . То есть корнями уравнения x 2 − 4 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

В обоих случаях левая часть равна нулю. Значит уравнение решено верно.

Решим ещё одно уравнение. Пусть требуется решить квадратное уравнение (x + 2) 2 = 25

Для начала проанализируем данное уравнение. Левая часть возведенá в квадрат и она равна 25 . Какое число в квадрате равно 25 ? Очевидно, что числа 5 и −5

То есть наша задача найти x, при которых выражение x + 2 будет равно числам 5 и −5 . Запишем эти два уравнения:

Решим оба уравнения. Это обычные линейные уравнения, которые решаются легко:

Значит корнями уравнения (x + 2) 2 = 25 являются числа 3 и −7 .

В данном примере как и в прошлом можно использовать определение квадратного корня. Так, в уравнения (x + 2) 2 = 25 выражение (x + 2) представляет собой квадратный корень из числа 25 . Поэтому можно cначала записать, что .

Тогда правая часть станет равна ±5 . Полýчится два уравнения: x + 2 = 5 и x + 2 = −5. Решив по отдельности каждое из этих уравнений мы придём к корням 3 и −7 .

Запишем полностью решение уравнения (x + 2) 2 = 25

Из рассмотренных примеров видно, что квадратное уравнение имеет два корня. Чтобы не забыть о найденных корнях, переменную x можно подписывать нижними индексами. Так, корень 3 можно обозначить через x 1 , а корень −7 через x 2

В предыдущем примере тоже можно было сделать так. Уравнение x 2 − 4 = 0 имело корни 2 и −2 . Эти корни можно было обозначить как x 1 = 2 и x 2 = −2.

Бывает и так, что квадратное уравнение имеет только один корень или вовсе не имеет корней. Такие уравнения мы рассмотрим позже.

Сделаем проверку для уравнения (x + 2) 2 = 25 . Подставим в него корни 3 и −7 . Если при значениях 3 и −7 левая часть равна 25 , то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна 25 . Значит уравнение решено верно.

Квадратное уравнение бывает дано в разном виде. Наиболее его распространенная форма выглядит так:

ax 2 + bx + c = 0 ,
где a, b, c — некоторые числа, x — неизвестное.

Это так называемый общий вид квадратного уравнения . В таком уравнении все члены собраны в общем месте (в одной части), а другая часть равна нулю. По другому такой вид уравнения называют нормальным видом квадратного уравнения.

Пусть дано уравнение 3x 2 + 2x = 16 . В нём переменная x возведенá во вторую степень, значит уравнение является квадратным. Приведём данное уравнение к общему виду.

Итак, нам нужно получить уравнение, которое будет похоже на уравнение ax 2 + bx + c = 0 . Для этого в уравнении 3x 2 + 2x = 16 перенесем 16 из правой части в левую часть, изменив знак:

3x 2 + 2x − 16 = 0

Получили уравнение 3x 2 + 2x − 16 = 0 . В этом уравнении a = 3 , b = 2 , c = −16 .

В квадратном уравнении вида ax 2 + bx + c = 0 числа a , b и c имеют собственные названия. Так, число a называют первым или старшим коэффициентом; число b называют вторым коэффициентом; число c называют свободным членом.

В нашем случае для уравнения 3x 2 + 2x − 16 = 0 первым или старшим коэффициентом является 3 ; вторым коэффициентом является число 2 ; свободным членом является число −16 . Есть ещё другое общее название для чисел a , b и c параметры .

Так, в уравнении 3x 2 + 2x − 16 = 0 параметрами являются числа 3 , 2 и −16 .

В квадратном уравнении желательно упорядочивать члены так, чтобы они располагались в таком же порядке как у нормального вида квадратного уравнения.

Например, если дано уравнение −5 + 4x 2 + x = 0 , то его желательно записать в нормальном виде, то есть в виде ax 2 + bx + c = 0.

В уравнении −5 + 4x 2 + x = 0 видно, что свободным членом является −5 , он должен располагаться в конце левой части. Член 4x 2 содержит старший коэффициент, он должен располагаться первым. Член x соответственно будет располагаться вторым:

Квадратное уравнение в зависимости от случая может принимать различный вид. Всё зависит от того, чему равны значения a , b и с .

Если коэффициенты a , b и c не равны нулю, то квадратное уравнение называют полным . Например, полным является квадратное уравнение 2x 2 + 6x − 8 = 0 .

Если какой-то из коэффициентов равен нулю (то есть отсутствует), то уравнение значительно уменьшается и принимает более простой вид. Такое квадратное уравнение называют неполным . Например, неполным является квадратное уравнение 2x 2 + 6x = 0, в нём имеются коэффициенты a и b (числа 2 и 6 ), но отсутствует свободный член c.

Рассмотрим каждый из этих видов уравнений, и для каждого из этих видов определим свой способ решения.

Пусть дано квадратное уравнение 2x 2 + 6x − 8 = 0 . В этом уравнении a = 2 , b = 6 , c = −8 . Если b сделать равным нулю, то уравнение примет вид:

Получилось уравнение 2x 2 − 8 = 0 . Чтобы его решить перенесем −8 в правую часть, изменив знак:

2x 2 = 8

Для дальнейшего упрощения уравнения воспользуемся ранее изученными тождественными преобразованиями. В данном случае можно разделить обе части на 2

У нас получилось уравнение, которое мы решали в начале данного урока. Чтобы решить уравнение x 2 = 4 , следует воспользоваться определением квадратного корня. Если x 2 = 4 , то . Отсюда x = 2 и x = −2 .

Значит корнями уравнения 2x 2 − 8 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна нулю, значит уравнение решено верно.

Уравнение, которое мы сейчас решили, является неполным квадратным уравнением . Название говорит само за себя. Если полное квадратное уравнение выглядит как ax 2 + bx + c = 0 , то сделав коэффициент b нулём получится неполное квадратное уравнение ax 2 + c = 0 .

У нас тоже сначала было полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Но мы сделали коэффициент b нулем, то есть вместо числа 6 поставили 0 . В результате уравнение обратилось в неполное квадратное уравнение 2x 2 − 4 = 0 .

В начале данного урока мы решили квадратное уравнение x 2 − 4 = 0 . Оно тоже является уравнением вида ax 2 + c = 0 , то есть неполным. В нем a = 1 , b = 0 , с = −4 .

Также, неполным будет квадратное уравнение, если коэффициент c равен нулю.

Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициент c нулём. То есть вместо числа 4 поставим 0

Получили квадратное уравнение 2x 2 + 6x =0 , которое является неполным. Чтобы решить такое уравнение, переменную x выносят за скобки:

Получилось уравнение x (2x + 6) = 0 в котором нужно найти x , при котором левая часть станет равна нулю. Заметим, что в этом уравнении выражения x и (2x + 6) являются сомножителями. Одно из свойств умножения говорит, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

В нашем случае равенство будет достигаться, если x будет равно нулю или (2x + 6) будет равно нулю. Так и запишем для начала:

Получилось два уравнения: x = 0 и 2x + 6 = 0 . Первое уравнение решать не нужно — оно уже решено. То есть первый корень равен нулю.

Чтобы найти второй корень, решим уравнение 2x + 6 = 0 . Это обычное линейное уравнение, которое решается легко:

Видим, что второй корень равен −3.

Значит корнями уравнения 2x 2 + 6x = 0 являются числа 0 и −3 . Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 0 и −3 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 0 и −3 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Следующий случай это когда числа b и с равны нулю. Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициенты b и c нулями. Тогда уравнение привет вид:

Получили уравнение 2x 2 = 0 . Левая часть является произведением, а правая часть равна нулю. Произведение равно нулю, если хотя бы один из сомножителей равен нулю. Очевидно, что x = 0 . Действительно, 2 × 0 2 = 0 . Отсюда, 0 = 0 . При других значениях x равенства достигаться не будет.

Проще говоря, если в квадратном уравнении вида ax 2 + bx + c = 0 числа b и с равны нулю, то корень такого уравнения равен нулю.

Отметим, что когда употребляются словосочетания «b равно нулю » или «с равно нулю «, то подразумевается, что параметры b или c вовсе отсутствуют в уравнении.

Например, если дано уравнение 2x 2 − 32 = 0 , то мы говорим, что b = 0 . Потому что если сравнить с полным уравнением ax 2 + bx + c = 0 , то можно заметить, что в уравнении 2x 2 − 32 = 0 присутствует старший коэффициент a , равный 2; присутствует свободный член −32 ; но отсутствует коэффициент b .

Наконец, рассмотрим полное квадратное уравнение ax 2 + bx + c = 0 . В качестве примера решим квадратное уравнение x 2 − 2x + 1 = 0 .

Итак, требуется найти x , при котором левая часть станет равна нулю. Воспользуемся изученными ранее тождественными преобразованиями.

Прежде всего заметим, что левая часть уравнения представляет собой . Если мы вспомним как , то получим в левой части (x − 1) 2 .

Рассуждаем дальше. Левая часть возведенá в квадрат и она равна нулю. Какое число в квадрате равно нулю? Очевидно, что только 0 . Поэтому наша задача найти x , при котором выражение x − 1 равно нулю. Решив простейшее уравнение x − 1 = 0 , можно узнать чему равно x

Этот же результат можно получить, если воспользоваться квадратным корнем. В уравнении (x − 1) 2 = 0 выражение (x − 1) представляет собой квадратный корень из нуля. Тогда можно записать, что . В этом примере записывать перед корнем знак ± не нужно, поскольку корень из нуля имеет только одно значение — ноль. Тогда получается x − 1 = 0 . Отсюда x = 1 .

Значит корнем уравнения x 2 − 2x + 1 = 0 является единица. Других корней у данного уравнения нет. В данном случае мы решили квадратное уравнение, имеющее только один корень. Такое тоже бывает.

Не всегда бывают даны простые уравнения. Рассмотрим например уравнение x 2 + 2x − 3 = 0 .

В данном случае левая часть уже не является квадратом суммы или разности. Поэтому нужно искать другие пути решения.

Заметим, что левая часть уравнения представляет собой квадратный трехчлен. Тогда можно попробовать выделить полный квадрат из этого трёхчлена и посмотреть что это нам даст.

Выделим полный квадрат из квадратного трёхчлена, располагающего в левой части уравнения:

В получившемся уравнении перенесем −4 в правую часть, изменив знак:

Теперь воспользуемся квадратным корнем. В уравнении (x + 1) 2 = 4 выражение (x + 1) представляет собой квадратный корень из числа 4 . Тогда можно записать, что . Вычисление правой части даст выражение x + 1 = ±2 . Отсюда полýчится два уравнения: x + 1 = 2 и x + 1 = −2 , корнями которых являются числа 1 и −3

Значит корнями уравнения x 2 + 2x − 3 = 0 являются числа 1 и −3 .

Выполним проверку:

Пример 3 . Решить уравнение x 2 − 6x + 9 = 0 , выделив полный квадрат.

Значит корнем уравнения x 2 − 6x + 9 = 0 является 3. Выполним проверку:

Пример 4 4x 2 + 28x − 72 = 0 , выделив полный квадрат:

Выделим полный квадрат из левой части:

Перенесём −121 из левой части в правую часть, изменив знак:

Воспользуемся квадратным корнем:

Получили два простых уравнения: 2x + 7 = 11 и 2x + 7 = −11. Решим их:

Пример 5 . Решить уравнение 2x 2 + 3x − 27 = 0

Это уравнение немного посложнее. Когда мы выделяем полный квадрат, первый член квадратного трёхчлена мы представляем в виде квадрата какого-нибудь выражения.

Так, в прошлом примере первым членом уравнения был 4x 2 . Его можно было представить в виде квадрата выражения 2x , то есть (2x ) 2 = 2 2 x 2 = 4x 2 . Чтобы убедиться что это правильно, можно извлечь квадратный корень из выражения 4x 2 . Это квадратный корень из произведения — он равен произведению корней:

В уравнении 2x 2 + 3x − 27 = 0 первый член это 2x 2 . Его нельзя представить в виде квадрата какого-нибудь выражения. Потому что нет числá, квадрат которого равен 2. Если бы такое число было, то этим числом был бы квадратный корень из числа 2. Но квадратный корень из числа 2 извлекается только приближённо. А приближённое значение не годится для представления числá 2 в виде квадрата.

Если обе части исходного уравнения умножить или разделить на одно и то же число, то полýчится уравнение равносильное исходному. Это правило сохраняется и для квадратного уравнения.

Тогда можно разделить обе части нашего уравнения на 2 . Это позвóлит избавиться от двойки перед x 2 что впоследствии даст нам возможность выделить полный квадрат:

Перепишем левую часть в виде трёх дробей со знаменателем 2

Сократим первую дробь на 2. Остальные члены левой части перепишем без изменений. Правая часть по-прежнему станет равна нулю:

Выделим полный квадрат.

При представлении члена в виде удвоенного произведения, появление множителя 2 привело бы к тому, что этот множитель и знаменатель дроби сократились бы. Чтобы этого не произошло, удвоенное произведение было домножено на . При выделении полного квадрата всегда нужно стараться сделать так, чтобы значение изначального выражения не изменилось.

Свернём полученный полный квадрат:

Приведём подобные члены:

Перенесём дробь в правую часть, изменив знак:

Воспользуемся квадратным корнем. Выражение представляет собой квадратный корень из числа

Для вычисления правой части воспользуемся правилом извлечения :

Тогда наше уравнение примет вид:

Полýчим два уравнения:

Решим их:

Значит корнями уравнения 2x 2 + 3x − 27 = 0 являются числа 3 и .

Корень удобнее оставить в таком виде, не выполняя деления числителя на знаменатель. Так проще будет выполнять проверку.

Выполним проверку. Подставим найденные корни в исходное уравнение:

В обоих случаях левая часть равна нулю, значит уравнение 2x 2 + 3x − 27 = 0 решено верно.

Решая уравнение 2x 2 + 3x − 27 = 0 , в самом начале мы разделили обе его части на 2 . В результате получили квадратное уравнение, в котором коэффициент перед x 2 равен единице:

Такой вид квадратного уравнения называют приведённым квадратным уравнением .

Любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведённым. Для этого нужно разделить обе его части на коэффициент, который располагается перед x². В данном случае обе части уравнения ax 2 + bx + c = 0 нужно разделить на a

Пример 6 . Решить квадратное уравнение 2x 2 + x + 2 = 0

Сделаем данное уравнение приведённым:

Выделим полный квадрат:

Получили уравнение , в котором квадрат выражения равен отрицательному числу . Такого быть не может, поскольку квадрат любого числа или выражения всегда положителен.

Следовательно, нет такого значения x , при котором левая часть стала бы равна . Значит уравнение не имеет корней.

А поскольку уравнение равносильно исходному уравнению 2x 2 + x + 2 = 0 , то и оно (исходное уравнение) не имеет корней.

Формулы корней квадратного уравнения

Выделять полный квадрат для каждого решаемого квадратного уравнения не очень удобно.

Можно ли создать универсальные формулы для решения квадратных уравнений? Оказывается можно. Сейчас мы этим и займёмся.

Взяв за основу буквенное уравнение ax 2 + bx + c = 0 , и выполнив некоторые тождественные преобразования, мы сможем получить формулы для вывода корней квадратного уравнения ax 2 + bx + c = 0 . В эти формулы можно будет подставлять коэффициенты a , b , с и получать готовые решения.

Итак, выделим полный квадрат из левой части уравнения ax 2 + bx + c = 0. Сначала сделаем данное уравнение приведённым. Разделим обе его части на a

Теперь в получившемся уравнении выделим полный квадрат:

Перенесем члены и в правую часть, изменив знак:

Приведём правую часть к общему знаменателю. Дроби, состоящие из букв, привóдят к общему знаменателю . То есть знаменатель первой дроби станóвится дополнительным множителем второй дроби, а знаменатель второй дроби станóвится дополнительным множителем первой дроби:

В числителе правой части вынесем за скобки a

Сократим правую часть на a

Поскольку все преобразования были тождественными, то получившееся уравнение имеет те же корни, что и исходное уравнение ax 2 + bx + c = 0.

Уравнение будет иметь корни только тогда, если правая часть больше нуля или равна нулю. Это потому что в левой части выполнено возведéние в квадрат, а квадрат любого числа положителен или равен нулю (если в этот квадрат возвóдится ноль). А чему будет равна правая часть зависит от того, что будет подставлено вместо переменных a , b и c .

Поскольку при любом a не рáвным нулю, знаменатель правой части уравнения всегда будет положительным, то знак дроби будет зависеть от знака её числителя, то есть от выражения b 2 − 4ac .

Выражение b 2 − 4ac называют дискриминантом квадратного уравнения . Дискриминант это латинское слово, означающее различитель . Дискриминант квадратного уравнения обозначается через букву D

D = b 2 4ac

Дискриминант позволяет заранее узнать имеет ли уравнение корни или нет. Так, в предыдущем задании мы долго решали уравнение 2x 2 + x + 2 = 0 и оказалось, что оно не имеет корней. Дискриминант же позволил бы нам заранее узнать, что корней нет. В уравнении 2x 2 + x + 2 = 0 коэффициенты a , b и c равны 2, 1 и 2 соответственно. Подставим их в формулу D = b 2 −4ac

D = b 2 − 4ac = 1 2 − 4 × 2 × 2 = 1 − 16 = −15.

Видим, что D (оно же b 2 − 4ac ) является отрицательным числом. Тогда нет смысла решать уравнение 2x 2 + x + 2 = 0, выделяя в нём полный квадрат, потому что когда мы дойдем до уравнения вида , окажется что правая часть станет меньше нуля (из-за отрицательного дискриминанта). А квадрат числа не может быть отрицательным. Следовательно, корней у данного уравнения не будет.

Станóвится понятно почему древние люди считали выражение b 2 − 4ac различителем. Это выражение подобно индикатору позволяет различить уравнение имеющего корни от уравнения, не имеющего корней.

Итак, D равно b 2 − 4ac . Подставим в уравнении вместо выражения b 2 − 4ac букву D

Если дискриминант исходного уравнения окажется меньше нуля (D < 0) , то уравнение примет вид:

В этом случае говорят, что у исходного уравнения корней нет, поскольку квадрат любого числа не должен быть отрицательным.

Если дискриминант исходного уравнения окажется больше нуля (D > 0) , то уравнение примет вид:

В этом случае уравнение будет иметь два корня. Для их вывода воспользуемся квадратным корнем:

Получили уравнение . Из него полýчится два уравнения: и . Выразим x в каждом из уравнений:

Получившиеся два равенства это и есть универсальные формулы для решения квадратного уравнения ax 2 + bx + c = 0. Их называют формулами корней квадратного уравнения .

Чаще всего эти формулы обозначаются как x 1 и x 2 . То есть для вычисления первого корня используется формула c индексом 1; для вывода второго корня — формула с индексом 2. Обозначим свои формулы так же:

Очерёдность применения формул не важнá.

Решим например квадратное уравнение x 2 + 2x − 8 = 0 с помощью формул корней квадратного уравнения. Коэффициенты данного квадратного уравнения это числа 1 , 2 и −8 . То есть, a = 1 , b = 2 , c = −8 .

Прежде чем использовать формулы корней квадратного уравнения, нужно найти дискриминант этого уравнения.

Найдём дискриминант квадратного уравнения. Для этого воспользуемся формулой D = b 2 4 ac . Вместо переменных a, b и c у нас будут коэффициенты уравнения x 2 + 2x − 8 = 0

D = b 2 4ac = 2 2 − 4 × 1 × (−8) = 4 + 32 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Теперь можно воспользоваться формулами корней квадратного уравнения:

Значит корнями уравнения x 2 + 2x − 8 = 0 являются числа 2 и −4 . Проверкой убеждаемся, что корни найдены верно:

Наконец, рассмотрим случай когда дискриминант квадратного уравнения равен нулю. Вернёмся к уравнению . Если дискриминант равен нулю, то правая часть уравнения примет вид:

И в этом случае квадратное уравнение будет иметь только один корень. Воспользуемся квадратным корнем:

Это ещё одна формула для вывода корня квадратного корня. Рассмотрим её применение. Ранее мы решили уравнение x 2 − 6x + 9 = 0 , имеющее один корень 3. Решили мы его методом выделения полного квадрата. Теперь попробуем решить с помощью формул.

Найдём дискриминант квадратного уравнения. В этом уравнении a = 1 , b = −6 , c = 9 . Тогда по формуле дискриминанта имеем:

D = b 2 4ac = (−6) 2 − 4 × 1 × 9 = 36 − 36 = 0

Дискриминант равен нулю (D = 0) . Это означает, что уравнение имеет только один корень, и вычисляется он по формуле

Значит корнем уравнения x 2 − 6x + 9 = 0 является число 3.

Для квадратного уравнения, имеющего один корень также применимы формулы и . Но применение каждой из них будет давать один и тот же результат.

Применим эти две формулы для предыдущего уравнения. В обоих случаях получим один и тот же ответ 3

Если квадратное уравнение имеет только один корень, то желательно применять формулу , а не формулы и . Это позволяет сэкономить время и место.

Пример 3 . Решить уравнение 5x 2 − 6x + 1 = 0

Значит корнями уравнения 5x 2 − 6x + 1 = 0 являются числа 1 и .

Ответ : 1; .

Пример 4 . Решить уравнение x 2 + 4x + 4 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант равен нулю. Значит уравнение имеет только один корень. Он вычисляется по формуле

Значит корнем уравнения x 2 + 4x + 4 = 0 является число −2 .

Ответ: −2.

Пример 5 . Решить уравнение 3x 2 + 2x + 4 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант меньше нуля. Значит корней у данного уравнения нет.

Ответ : корней нет.

Пример 6 . Решить уравнение (x + 4) 2 = 3x + 40

Приведём данное уравнение к нормальному виду. В левой части располагается квадрата суммы двух выражений. Раскрóем его:

Перенесём все члены из правой части в левую часть, изменив их знаки. В правой части останется ноль:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения (x + 4) 2 = 3x + 40 являются числа 3 и −8 .

Ответ : 3; −8.

Пример 7 . Решить уравнение

Умнóжим обе части данного уравнения на 2 . Это позвóлит нам избавиться от дроби в левой части:

В получившемся уравнении перенесём 22 из правой части в левую часть, изменив знак. В правой части останется 0

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения являются числа 23 и −1 .

Ответ : 23; −1.

Пример 8 . Решить уравнение

Умнóжим обе части на наименьшее общее кратное знаменателей обеих дробей. Это позвóлит избавиться от дробей в обеих частях. Наименьшее общее кратное чисел 2 и 3 это число 6 . Тогда получим:

В получившемся уравнении раскроем скобки в обеих частях:

Теперь перенесём все члены из правой части в левую часть, изменив у них знаки. В правой части останется 0

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения являются числа и 2.

Примеры решения квадратных уравнений

Пример 1 . Решить уравнение x 2 = 81

Это простейшее квадратное уравнение, в котором надо определить число, квадрат которого равен 81. Таковыми являются числа 3 и −3. Воспользуемся квадратным корнем для их вывода:

Ответ : 9, −9 .

Пример 2 . Решить уравнение x 2 − 9 = 0

Это неполное квадратное уравнение. Для его решения нужно перенести член −9 в правую часть, изменив знак. Тогда получим:

Ответ : 3, −3.

Пример 3 . Решить уравнение x 2 − 9x = 0

Это неполное квадратное уравнение. Для его решения сначала нужно вынести x за скобки:

Левая часть уравнения является произведением. Произведение равно нулю, если хотя один из сомножителей равен нулю.

Левая часть станет равна нулю, если отдельно x равно нулю, или если выражение x − 9 равно нулю. Получится два уравнения, одно из которых уже решено:

Ответ : 0, 9 .

Пример 4 . Решить уравнение x 2 + 4x − 5 = 0

Это полное квадратное уравнение. Его можно решить методом выделения полного квадрата или с помощью формул корней квадратного уравнения.

Решим данное уравнение с помощью формул. Сначала найдём дискриминант:

D = b 2 − 4ac = 4 2 − 4 × 1 × (−5) = 16 + 20 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Вычислим их:

Ответ : 1, −5 .

Пример 5 . Решить уравнение

Умнóжим обе части на чисел 5, 3 и 6. Это позвóлит избавиться от дробей в обеих частях:

В получившемся уравнении перенесём все члены из правой части в левую часть, изменив знак. В правой части останется ноль:

Приведём подобные члены:

Ответ : 5 , .

Пример 6 . Решить уравнение x 2 = 6

В данном примере как и нужно воспользоваться квадратным корнем:

Однако, квадратный корень из числа 6 не извлекается. Он извлекается только приближённо. Корень можно извлечь с определённой точностью. Извлечём его с точностью до сотых:

Но чаще всего корень оставляют в виде радикала:

Ответ :

Пример 7 . Решить уравнение (2x + 3) 2 + (x − 2) 2 = 13

Раскроем скобки в левой части уравнения:

В получившемся уравнении перенесём 13 из правой части в левую часть, изменив знак. Затем приведём подобные члены:

Получили неполное квадратное уравнение. Решим его:

Ответ : 0 , −1,6 .

Пример 8 . Решить уравнение (5 + 7x )(4 − 3x ) = 0

Данное уравнение можно решить двумя способами. Рассмотрим каждый из них.

Первый способ . Раскрыть скобки и получить нормальный вид квадратного уравнения.

Раскроем скобки:

Приведём подобные члены:

Перепишем получившееся уравнение так, чтобы член со старшим коэффициентом располагался первым, член со вторым коэффициентом — вторым, а свободный член располагался третьим:

Чтобы старший член стал положительным, умнóжим обе части уравнения на −1. Тогда все члены уравнения поменяют свои знаки на противоположные:

Решим получившееся уравнение с помощью формул корней квадратного уравнения:

Второй способ . Найти значения x , при которых сомножители левой части уравнения равны нулю. Этот способ удобнее и намного короче.

Произведение равно нулю, если хотя бы один из сомножителей равен нулю. В данном случае равенство в уравнении (5 + 7x )(4 − 3x ) = 0 будет достигаться, если выражение (5 + 7x ) равно нулю, или же выражение (4 − 3x ) равно нулю. Наша задача выяснить при каких x это происходит:

Примеры решения задач

Предстáвим, что возникла необходимость построить небольшую комнату, площадь которой 8 м 2 . При этом длина комнаты должна быть в два раза больше её ширины. Как определить длину и ширину такой комнаты?

Сделаем примерный рисунок этой комнаты, который иллюстрирует вид сверху:

Обозначим ширину комнаты через x . А длину комнаты через 2x , потому что по условию задачи длина должна быть в два раза больше ширины. Множитель 2 и выполнит это требование:

Поверхность комнаты (её пол) является прямоугольником. Для вычисления площади прямоугольника, нужно длину данного прямоугольника умножить на его ширину. Сделаем это:

2x × x

По условию задачи площадь должна быть 8 м 2 . Значит выражение 2x × x следует приравнять к 8

2x × x = 8

Получилось уравнение. Если решить его, то можно найти длину и ширину комнаты.

Первое что можно сделать это выполнить умножение в левой части уравнения:

2x 2 = 8

В результате этого преобразования переменная x перешла во вторую степень. А мы говорили, что если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение является уравнением второй степени или квадратным уравнением.

Для решения нашего квадратного уравнения воспользуемся изученными ранее тождественными преобразованиями. В данном случае можно разделить обе части на 2

Теперь воспользуемся квадратным корнем. Если x 2 = 4 , то . Отсюда x = 2 и x = −2 .

Через x была обозначена ширина комнаты. Ширина не должна быть отрицательной, поэтому в расчёт берём только значение 2 . Такое часто бывает при решении задачи, в которых применяется квадратное уравнение. В ответе получаются два корня, но условию задачи удовлетворяет только один из них.

А длина была обозначена через 2x . Значение x теперь известно, подставим его в выражение 2x и вычислим длину:

2x = 2 × 2 = 4

Значит длина равна 4 м , а ширина 2 м . Это решение удовлетворяет условию задачи, поскольку площадь комнаты равна 8 м 2

4 × 2 = 8 м 2

Ответ : длина комнаты составляет 4 м , а ширина 2 м .

Пример 2 . Огородный участок, имеющий форму прямоугольника, одна сторона которого на 10 м больше другой, требуется обнести изгородью. Определить длину изгороди, если известно, что площадь участка равна 1200 м 2

Решение

Длина прямоугольника, как правило, больше его ширины. Пусть ширина участка x метров, а длина (x + 10) метров. Площадь участка составляет 1200 м 2 . Умножим длину участка на его ширину и приравняем к 1200 , получим уравнение:

x (x + 10) = 1200

Решим данное уравнение. Для начала раскроем скобки в левой части:

Перенесём 1200 из правой части в левую часть, изменив знак. В правой части останется 0

Решим получившееся уравнение с помощью формул:

Несмотря на то, что квадратное уравнение имеет два корня, в расчёт берём только значение 30 . Потому что ширина не может выражаться отрицательным числом.

Итак, через x была обозначена ширина участка. Она равна тридцати метрам. А длина была обозначена через выражение x + 10 . Подставим в него найденное значение x и вычислим длину:

x

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Квадратные уравнения. Дискриминант. Решение, примеры.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Виды квадратных уравнений

Что такое квадратное уравнение? Как оно выглядит? В термине квадратное уравнение ключевым словом является "квадратное". Оно означает, что в уравнении обязательно должен присутствовать икс в квадрате. Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и просто число (свободный член). И не должно быть иксов в степени, больше двойки.

Говоря математическим языком, квадратное уравнение - это уравнение вида:

Здесь a, b и с – какие-то числа. b и c – совсем любые, а а – любое, кроме нуля. Например:

Здесь а =1; b = 3; c = -4

Здесь а =2; b = -0,5; c = 2,2

Здесь а =-3; b = 6; c = -18

Ну, вы поняли…

В этих квадратных уравнениях слева присутствует полный набор членов. Икс в квадрате с коэффициентом а, икс в первой степени с коэффициентом b и свободный член с.

Такие квадратные уравнения называются полными.

А если b = 0, что у нас получится? У нас пропадёт икс в первой степени. От умножения на ноль такое случается.) Получается, например:

5х 2 -25 = 0,

2х 2 -6х=0,

-х 2 +4х=0

И т.п. А если уж оба коэффицента, b и c равны нулю, то всё ещё проще:

2х 2 =0,

-0,3х 2 =0

Такие уравнения, где чего-то не хватает, называются неполными квадратными уравнениями. Что вполне логично.) Прошу заметить, что икс в квадрате присутствует во всех уравнениях.

Кстати, почему а не может быть равно нулю? А вы подставьте вместо а нолик.) У нас исчезнет икс в квадрате! Уравнение станет линейным. И решается уже совсем иначе...

Вот и все главные виды квадратных уравнений. Полные и неполные.

Решение квадратных уравнений.

Решение полных квадратных уравнений.

Квадратные уравнения решаются просто. По формулам и чётким несложным правилам. На первом этапе надо заданное уравнение привести к стандартному виду, т.е. к виду:

Если уравнение вам дано уже в таком виде - первый этап делать не нужно.) Главное - правильно определить все коэффициенты, а , b и c .

Формула для нахождения корней квадратного уравнения выглядит так:

Выражение под знаком корня называется дискриминант . Но о нём - ниже. Как видим, для нахождения икса, мы используем только a, b и с . Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в эту формулу и считаем. Подставляем со своими знаками! Например, в уравнении:

а =1; b = 3; c = -4. Вот и записываем:

Пример практически решён:

Это ответ.

Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…

Самые распространённые ошибки – путаница со знаками значений a, b и с . Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте !

Предположим, надо вот такой примерчик решить:

Здесь a = -6; b = -5; c = -1

Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится . Вот и пишем подробно, со всеми скобочками и знаками:

Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

Но, частенько, квадратные уравнения выглядят слегка иначе. Например, вот так:

Узнали?) Да! Это неполные квадратные уравнения .

Решение неполных квадратных уравнений.

Их тоже можно решать по общей формуле. Надо только правильно сообразить, чему здесь равняются a, b и с .

Сообразили? В первом примере a = 1; b = -4; а c ? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0 ! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с , а b !

Но неполные квадратные уравнения можно решать гораздо проще. Безо всяких формул. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
Не получается? То-то…
Следовательно, можно уверенно записать: х 1 = 0 , х 2 = 4 .

Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем по общей формуле. Замечу, кстати, какой икс будет первым, а какой вторым - абсолютно безразлично. Удобно записывать по порядочку, х 1 - то, что меньше, а х 2 - то, что больше.

Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

Остаётся корень извлечь из 9, и всё. Получится:

Тоже два корня. х 1 = -3 , х 2 = 3 .

Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

Дискриминант. Формула дискриминанта.

Волшебное слово дискриминант ! Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении.) Напоминаю самую общую формулу для решения любых квадратных уравнений:

Выражение под знаком корня называется дискриминантом. Обычно дискриминант обозначается буквой D . Формула дискриминанта:

D = b 2 - 4ac

И чем же примечательно это выражение? Почему оно заслужило специальное название? В чём смысл дискриминанта? Ведь -b, или 2a в этой формуле специально никак не называют... Буквы и буквы.

Дело вот в чём. При решении квадратного уравнения по этой формуле, возможны всего три случая.

1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

2. Дискриминант равен нулю. Тогда у вас получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых . Но, в упрощённом варианте, принято говорить об одном решении.

3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

Честно говоря, при простом решении квадратных уравнений, понятие дискриминанта не особо-то и требуется. Подставляем в формулу значения коэффициентов, да считаем. Там всё само собой получается, и два корня, и один, и ни одного. Однако, при решении более сложных заданий, без знания смысла и формулы дискриминанта не обойтись. Особенно - в уравнениях с параметрами. Такие уравнения - высший пилотаж на ГИА и ЕГЭ!)

Итак, как решать квадратные уравнения через дискриминант вы вспомнили. Или научились, что тоже неплохо.) Умеете правильно определять a, b и с . Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?

А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…

Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?
Допустим, после всяких преобразований вы получили вот такое уравнение:

Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1 , проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком . Если не получилось – значит уже где-то накосячили. Ищите ошибку.

Если получилось - надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b , который перед иксом, равен -1. Значит, всё верно!
Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

Приём третий . Если в вашем уравнении есть дробные коэффициенты, - избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в уроке "Как решать уравнения? Тождественные преобразования". При работе с дробями ошибки, почему-то так и лезут…

Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

Вот и всё! Решать – одно удовольствие!

Итак, подытожим тему.

Практические советы:

1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

Теперь можно и порешать.)

Решить уравнения:

8х 2 - 6x + 1 = 0

х 2 + 3x + 8 = 0

х 2 - 4x + 4 = 0

(х+1) 2 + x + 1 = (x+1)(x+2)

Ответы (в беспорядке):

х 1 = 0
х 2 = 5

х 1,2 = 2

х 1 = 2
х 2 = -0,5

х - любое число

х 1 = -3
х 2 = 3

решений нет

х 1 = 0,25
х 2 = 0,5

Всё сходится? Отлично! Квадратные уравнения - не ваша головная боль. Первые три получились, а остальные - нет? Тогда проблема не в квадратных уравнениях. Проблема в тождественных преобразованиях уравнений. Прогуляйтесь по ссылке, это полезно.

Не совсем получается? Или совсем не получается? Тогда вам в помощь Раздел 555. Там все эти примеры разобраны по косточкам. Показаны главные ошибки в решении. Рассказывается, разумеется, и о применении тождественных преобразований в решении различных уравнений. Очень помогает!

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Опыт